BACKGROUND

The IRTF is installing new motors for the dome upgrade.
An appropriate drive needs to be selected to drive the motors
Wiring with appropriate current rating and breakers needs to be installed at the IRTF
Keep in mind that our utility power is 3 phase, 208 VAC
Stand alone or shared DC bus, braking resistors, line filters, etc. need to be determined.

SUMMARY

These are the main details:
Motor (x3)
BSM100C-3150BA
Drive (x3)
MFE460A021
TCP/IP to ESL Router OPT036-501
Resolver Card (x3) OPT-MF-013
Expanded Motion
Control Card (x1)
AC Supply Current
Breakers
OPT-MF-101
30A (derated for just $2 x$ torque)
40A

USEFUL LINKS

The MotiFlex e100 is a good line of AC Drives. The Baldor Rep recommended this line for our needs. There are multiple models to choose from with the current rating being the difference among models.

Model	MotiFlex e100 M Continuous Current (A)	odels (200\% for 3s, Cont. Derated at 35% (A)	8 kHz mode) Peak Current (A)	Peak Derated at 35\% (A)
MFE460A010	10.5	6.825	21	13.65
MFE460A016	16	10.4	32	20.8
MFE460A021	21	13.65	42	27.3
MFE460A026	26	16.9	52	33.8

The MFE460A021 appears to be a good fit when derated. It can supply the continuous current and the maximum current is $\sim 23 \mathrm{~A}$ at 60 seconds derated, which is double the 11.40 A continuous rating of the motor. The absolute peak current for the motor is 29A. How long 29A can be applied is a thermal issue. For 3 seconds, the drive can apply 27.3 A derated, and 42A with no derating.

) Drive Current Ratings

Size A Drives		MFE460A010B		MFE460A016B		MFE460A021B		MFE460A026B	
Overload Mode	PWM	Continuous $A_{\text {ms }}$	Overload Ams	Continuous $A_{\text {rms }}$	Overload Arms	Continuous Arms	Overload Ams	Continuous Ams	Overload Ams
	4kHz	8	24	12	36	17	51	20	60

Full load output current rating not exceeding (A)	AC supply current at full load (A)	Input fuse	Circuit breaker (B-type)
10	12.1	$\begin{gathered} \text { Ferraz Shawmut: } \\ \text { A60Q20-2, } 20 \mathrm{~A}(\mathrm{B214338}) \end{gathered}$	16 A
14	17	$\begin{gathered} \text { Ferraz Shawmut: } \\ \text { A60Q20-2, } 20 \text { A (B214338) } \end{gathered}$	20 A
15	18.2	Ferraz Shawmut: A60025-2, 25 A (Z214842) or 6.600 CP URD $22 \times 58 / 25$ (B093956)	25 A
21	25.5	Ferraz Shawmut: A60Q30-2, $30 \mathrm{~A}($ (E215859) or 6.600 CP URD $22 \times 58 / 32$ (Z094828)	32A
24	29	Ferraz Shawmut: A60Q35-2, $35 \mathrm{~A}(\mathrm{~J} 216369)$ 6.600 CP URD $22 \times 58 / 32$ (Z094828)	40 A
29	35.2	Ferraz Shawmut: A60Q40-2,40 A (N216879) or 6.600 CP URD $22 \times 58 / 40$ (S094822)	40 A
33.5	40.7	6.600 CP URD $22 \times 58 / 50$ (W094779)	50 A
48	54.6	Cooper Bussmann: LPN-RK-80SP	80 A
65	78.9	Cooper Bussmann: LPN-RK-80SP	80 A

Table 8 - AC input current and protection device ratings - $21 \mathrm{~A} \sim 65 \mathrm{~A}$ models

To determine where the IRTF is on the above table, let's review our parameters:
Drive model: MFE460A021
(this is the 21A model)

Fuse holders are needed. In the $10 \mathrm{~mm} \times 38 \mathrm{~mm}$ size $\left(13 / 32^{\prime \prime} \times 1.5^{\prime \prime}\right)$ the maximum current is 32 A , which is the maximum that is required.

STAND ALONE or DC BUS

In stand alone mode, each driver rectifies AC power for itself to PWM and drive the motor.
In shared DC bus mode, one unit rectifies the AC and shares it with the other drives by
connecting bus bars together.
The advantage is energy savings if multiple motors are starting and stopping at the same time. One motor becomes a generator and this energy can be supplied to the another motor that is running

Since all or the dome motors are essentially coupled together mechanically and commanded to do approximately the same thing, they are all running or decelerating at the same time. It doesn't appear that a shared DC bus would be beneficial in this situation

Braking Resistor or Regen Resistor

When the motors are decelerating, they act as generators and that energy needs to go somewhere. In this case, the energy is dissipated as heat in a resistor. The wattage of the resistor can be determined through a worksheet in the installation manual. As a general guideline, below are the resistors from the MotiFlex brochure. Resistors can also be purchased from Digikey or other vendors. A 15 ohm, 500W resistor is generally recommended for the MFE460A021

The IRTF may not even need a regeneration resistor. The duty cycle is very low and the deceleration period is very long. The inertia of the dome is high, however. The final equation is Power=Energy/Decel Period. This is the power over that deceleration period. The duty cycle on the dome is very low - a few seconds / minutes (or hours).

However, when the dome is stuck, the duty cycle increases (back and forth). Some type of resistor may be a good idea. It can be measured and confirmed when in operation. Resistor size and value can be adjusted if necessary.

Here's a good guide explaining regen resistors. Non-inductive is preferred. http://www.parkermotion.com/manuals/APEX615n/615n_body_09.pdf
\square
\square

The OPT-MF-101 is a "Multi-axis programmable Mint Machine Module". Includes incremental encoder input and digital I/O. Controls up to 4 axes of interpolated motion". This option eliminates the need to buy a full featured motion controller. It provides enough features to implement the PID velocity loop that the IRTF wants to run.

The e100 Powerlink Router is required. It converts TCP/IP to Ethernet Powerlink. It's really more like a bridge of sorts. TCP/IP isn't very deterministic and Ethernet Powerlink is.

AC LINE REACTORS \& FILTERS

According to Baldor reps, AC line filters are not needed. They are a European CE requirement.
Line reactors, although not required, are recommended:
"The use of an AC input line filter is not required for use in the US. The use of the filter can help reduce potential interference with other equipment. The use of a line reactor is recommended as added protection to the input diode bridge. If you have a solid line with less than 1% impedance or other power related issues which could potential result in premature failure of the input bridge or cause nuisance DC Bus trip / faults." -Baldor Rep

MotiFlex e100 catalog number	Required line reactor inductance (mH)	Recommended Baldor AC line reactor
MFE460A001		LRAC02502
MFE460A003	1.2	
MFE460A006		LRAC05502
MFE460A010	0.8	
MFE460A016		0.5
MFE460A021		LRAC08002
MFE460A026		0.4
MFE460A033		
MFE460A048		

Table 4 - Baldor line reactor part numbers

A.1.3 AC line reactors

AC line reactors provide bl-directional protecton, reducing urwanted electrical noiee, hamonics and overvotage tips. A line reactor should aiways be used when a Notiflex e100 is sharing itg and overvonge tips. A ine reactor should

A.1.3.1 Catalog numbers

Baldor catalog number	Rated volts (VAC)	Rated power (kW)	Rated current (A)	$\begin{gathered} \text { Impedance } \\ \text { (\%) } \end{gathered}$	Tnductance (mH)	$\begin{aligned} & \text { Weight } \\ & \mathrm{kg} \text { (lbs) } \end{aligned}$
LRACOOSOR	$3801400 / 415$	3.7	8	3	30	3.6 (8)
LRAC02502	300/400/415	11.1	25	3	1.2	6.4 (14)
LRAC03502	575	14.9	35	3	0.8	7.3 (16)
LRACOS500	575	29.8	55	3	0.5	12.2 (27)
LRAC09002	300/400/415	37.2	80	3	0.4	14.5 (32)

SAFETY \& VOLTAGE MONITORS

The power is 208VAC, 3 phase. Care needs to be taken and safety is very important.
Voltage monitors such as the Crouzet 84873022 are good from a safety and fault detection point of view.
Newark carries them, so does digikey.
http://www.crouzet.com/english/catalog/c-lynx-control-relays-phase-control-single-function-phase-control-relay-17-5-mm-mws-Part\ number-84873020.pdf\#zoom=100

Carlo Gavazzi, Inc. DPA01CM44 is another example
http://www.gavazzionline.com/pdf/DPA01CM.eng.pdf

From a safety point of view, the Voltage Visions monitors look really good:
http://www.graceport.com/assets/files/VoltageVision_R3W_R3WSR_DataSheet.pdf

Can buy here:
http://www.mitchellinstrument.com/voltage-vision-r-3w.html?source=googleps
Ebay had a seller with brand new ones at $\$ 20$ a piece. Good deal. $\$ 40$ each with shipping.
Labels:
http://www.newark.com/grace-engineered-products/r-3w-l/adhesive-backed-warning-label/dp/44P9346?Ntt=R-3W-L

For 120 V , a panel mount LED should be sufficient:

LE67C5R Digikey

http://www.arcolectric.com/pdfs/Indicators_199.pdf

WIRING

The most important wiring to spec is the drive to motor wiring. It will have to be heavy gauge. NOTE: AC power wiring will be contracted out. The selection of the drive to motor wiring will also be verified by the contractor.

Requirements of drive to motor wiring:			
Current, max	35 A		
Breakers	40 A	(motor absolute is 29A, NOT DERATED)	
Shielding	Yes		
Conductors		4	

Let's see what National Electric Code recommends:

Baldor is in agreemen	with 8 AWG	1 drive).							
Alpha conveniently m	es a line of wir	s. They have	auge with shielding and	xtra pairs for brakes.					
Part \#	Manufacturer	Vendor	Gauge	Conductors	Price	Stock		Comment	
SF61108CY OR005	Alpha Wire	Allied Electric	8	4	\$610.44 / 100ft		3		
SF61108CY OR005	Alpha Wire	Newark	8	4	\$670 / 100ft		10		
SF61224CY OR005	Alpha Wire	Allied Electric	8 (+ 2pair 16AWG)	$4+4$	\$684.80 / 100ft		2	in stock only $2 \times 100 \mathrm{ft}, 500 \mathrm{ft}$ is $\$ 4,000$, manufacturer only makes 1000 ft now according to a distributor	

The 16 AWG pairs could be used for th thermal switch and break. Yes, it's overkill, but conveniently in one cable

The brakes (2wires), thermal switch (2 wires), and resolver (6 wires) need to be wired. The only significant current will be the brakes. The brakes and thermal switch need to be separated from the resolver feedback.

Brake Data for BSM and SSE

\(\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline \text { Motor } \\
\text { Code }\end{array}
$$ \begin{array}{c}Brake

Holding

Torque Nm

(\mathrm{lb-in)}\end{array}\right)\) Watts \begin{tabular}{c}
Brake

Voltage

Brake

Current

(amps)
\end{tabular}$\quad-$

2242C SL002
Alpha
Mouser
18AWG
2 pair
$\$ 670.33$ / 500ft
Will have to splice for 130 ft if buying 100 ft rolls. 500 ft isn't that much more expensive. Consider just buying 500 ft to eliminate splicing hassle.

It's easier to carry the foil shield for the switch separate from the brake when entering the electrical box since it won't require cutting of the plastic outer jacket. I already purchased the above wire, which is fine for the brake. It appears that Baldor recommends shielding each separately. We can double up the brake wires then. If ever needed, the extra pair could be removed and used for something else. No big deal in the end. 22 AWG twisted, shielded pair is not expensive. Buy 500 ' and run that in the conduit.

Brake should be twisted due to current. However, the thermal switch doesn't have this requirement. Then again, the motor wires aren't twisted (8AWG), so twisting the brake wires doesn't mean much. At any rate, twisting the brake wires is the right thing to do. Since we are pulling this wire through conduit, a heavier gauge may be advisable solely for physical reasons. Baldor recommends using a twisted shielded pair for the motor temp circuit. It isn't clear if this includes a simple switch circuit. Just order twisted shielded pair - no need to analyze.

Part \#	Manufacturer	Vendor	Gauge	Conductors	Price	Stock
8451010500	Belden	Newark	22 AWG	1 pair	126.48	yes
8451010500	Mouser	Newark	22 AWG	1 pair	126.48	yes
8451010500	Belden	Newark	22 AWG	1 pair	126.48	yes

There will need to be 3 pairs for the resolver. Current is minimal. A few spare pair might be nice.
"Armored" cable may be a possibility since it will have to be run outside of the power conduit

CONNECTORS \& ACCESSORIES

Fuses should be installed. Since the maximum power output is 240 W , the fuse should should be at a maximum of just over 2 A due to power supply efficiency. However, the most that we need is 100 W for the brakes. With efficiency headroom, a standard 2 A fuse would be sufficient. $2 \mathrm{~A} \times 120 \mathrm{~V} \times 85 \%$ efficiency $=204 \mathrm{~W}$ output. The feed off of the 3 phase should have a higher class of fuse.

| Part Number | Manufacturer | Distributor | Comments | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| KTK-2 | Cooper Bussmann | Digikey | $2 \mathrm{~A}, 10 \times 38 \mathrm{~mm}$ fuse | |
| CB1038-1 | Altech | Mouser | $10 \times 38 \mathrm{~mm}$ fuse holder, DIN mount | |
| | | | | |
| For the UPS 120V, other fuses are acceptable. | Baldor recommends $2.5 \mathrm{~A}, 5 \times 20 \mathrm{~mm}$ fuses for the +24 V to each drive. | | | |
| Part Number | Manufacturer | Distributor | Comments | |
| 5MT 2.5-R | Bel Fuse Inc. | Digikey | Baldor recommended and good enough for +24 backup AC
 input | |
| 5MT 1-R | Bel Fuse Inc. | Digikey | $1 \mathrm{~A} \times 120 \mathrm{~V} \times 85 \%=102 \mathrm{~V}$, enough for contactor drive | |
| SPC11912 | Multicomp (SPC) | Newark | $5 \times 20 \mathrm{~mm}$ fuse block, DIN Rail | |
| SPC10572 | Multicomp (SPC) | Newark | Fuse end plate | |

DIN MOUNT RELAYS

Relays are required to control the 3 power contactors, the drive enable inputs, and the brakes.
The 3 contactors require $286 \mathrm{~mA} \times 3=858 \mathrm{~mA}$ of current @ 24 V input.
The drives require $7 \mathrm{~mA} \times 3=21 \mathrm{~mA}$ (the Safety Board could probably drive this with its optocouplers)
The 3 brakes require 1.4A each.

DISTRIBUTION BLOCKS \& TERMINAL BLOCKS

To keep the wiring clean, safe, and manageable, distribution blocks are required. DIN mounted is nice, but not required. Probably want screw mount for junction boxes.

ENCLOSURES

We need a large enclosure for the drives and electronics. Due to the overall cost of this project, voltage danger, and protection of personnel and equipment, a NEMA box should be used. A stand alone seems like the best idea. This way it can be completely wired in Hilo and simply carted up to the Summit and installed.

Small enclosures are need where the wire ends near each motor. Two are required per motor. One is for the motor and the other is for the enclosure. Also a splice box will be required for the 130 foot motor run since the wire comes in 100 foot spools. A total of 7 enclosures is required. The Copper XXX RTSC are carried in Hilo by Alpha Electric. Pick one of those. The terminal block are 2.7 " and 2.1 " long. Each box will require two blocks, so, worst case, it is $2.7+2.1=4.8 "$. The splice block only requires 1 block. Wires are heavy gauge and hard to bend. Keep that in mind.
http://www.cooperindustries.com/content/dam/public/bline/Resources/Library/catalogs/electrical_enclosures/enclosures_and_wireway/T3RScrewCoverEnclosures.pdf

We need some 35 mm DIN rail. It's standard stuff, but for completeness, I added it.

Par\#	Manufacturer	Vendor	Comments
9080MH379	Square D	Grainger	Honolulu has it in stock.

GROUNDING

Grounding is important for safety, proper operation, EMI, etc. Baldor has a good installation menu with recommendations.

Component

How to ground
Motor Cable
Earth ground right at drive. Connect to chassis lug on motor.

Resolver	Earth ground through backshells at motor and drive. AGND inner shields only at drive.							
AC Power	If longer than 1 ft , wires must be shielded to backplane.							
Thermal switch	Ground to backplane near drive.							
Brake	Baldor says to ground at one point only. Probably best near relay/diode.							
Regen Resistor	Connect to backplane at drive and at resistor.							
Analog Signals								
	Twisted shielded pair with overall tied to backplane at one end only.							
RS-485 Adapter, Converter, etc.								
It may be too difficult to use Ethernet. The RS-485 may be the easiest solution for feedback from the drive.								
			Comments					
Par\#\#	Manufacturer Vendor			Link				
PCI2S422ISO	StarTech.com	Amazon.com	Isolated.	http://www.amazon.com/StarTech-com-RS422-Serial-AdapterPCI2S422ISO/dp/B0001KFWMK				
IC526A-F		http://www. blackbox.com	Isolated, but DB25 connector	http://www.blackbox.com/Store/Detail.aspx/Async-RS-232-to-RS-485-Interface-Bidirectional-Converter-with-Opto-Isolation-DB25-Female-to-RJ-45/IC526A\% C4\%82F				
ICD100A		http://www. blackbox.com	DIN rail moung, 1030VDC input. Perfect.	http://www.blackbox.com/Store/Detail.aspx/RS-232-to-RS-422-RS-485-DIN-Rail-Converter-with-Opto-Isolation/ICD100A				
485LDRC9		http://www.bb-elec. com/product11. asp? sku=485LDRC9	DIN rail moung, 1030VDC input. Perfect. Looks like rebranded ICD100A.	http://www.bb-el	com/product11.asp?s	sku=485LDRC9		

